
PHYSICAL REVIEW E SEPTEMBER 1999VOLUME 60, NUMBER 3
General form of coupling leading to synchronization of oscillating dynamical systems

G. Schmidt and A. A. Chernikov
Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030

~Received 12 November 1998!

There are numerous examples in nature where oscillating or pulsing physical and biological systems auto-
matically synchronize. Here we pose the question: Is there a general type of coupling that leads to such
synchronization? It is demonstrated on numerous examples that dissipative coupling results in synchronization
for a variety of systems.@S1063-651X~99!13308-7#
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INTRODUCTION

The old problem of synchronization of coupled oscillato
has recently received renewed attention@1–5#. Physical sys-
tems such as Huygens pendulum clocks, hanging side
side self-synchronize, and so do a variety of biological s
tems, such as thousands of fireflies flashing in synchro
pacemaker cells of the heart, etc. More recently synchr
zation of Josephson junction arrays has received much a
tion @6–9#.

Much recent work has been carried out by Strogatz
co-workers@2–4#, who study a system of coupled limit cycl
oscillators described by

żj5zj~12uzj u21 iv!1
K

N (
i

~zi2zj !,

wherezj is the position of thej th oscillator in the complex
plane, it is clear that the uncoupled oscillators (K50) are
attracted to the unit circle limit cycle and the motion of t
individual oscillators on the unit circle is described by

u̇ j5v1
K

N (
i

sin~u i2u j !.

Depending on the coupling constantK and the distribution of
oscillators in the frequency domain synchronization can
cur.

Here we are looking at a different aspect of synchroni
tion. Since there are many different types of systems in
ture that exhibit self-synchronization, it is reasonable to
sume that there exists a general kind of coupling produc
synchronization in a large variety of different systems. Ty
cally one expects by increasing the number of dimension
phase space, as one gets by coupling individual system
lead to more chaotic behavior. In these systems the oppo
effect, synchronization leading to order is apparent.

Consider N identical oscillators, characterized by th
equations

ẋi5 f ~xi yi !,
~1!

ẏi5g~xi ,yi !.
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What should be the form of coupling added to these eq
tions that leads to synchronization? It will be shown tha
simple type of dissipative coupling leads to synchronizat
in a variety of systems.

COUPLING OF SIMPLE HAMILTONIAN OSCILLATORS

The simplest case to consider is the one with two h
monic oscillators withf 5yi , g52xi . Introduce dissipa-
tive coupling to get

ẋ15y11C~x22x1!,

ẏ152x1 ,
~2!

ẋ25y21C~x12x2!,

ẏ252x2 ,

whereC is the coupling constant, or in a different form

ẍ11C~ ẋ12 ẋ2!1x150,
~3!

ẍ21C~ ẋ22 ẋ1!1x250.

Normal mode analysis leads to the frequenciesv561,
corresponding to undamped in phase oscillators withx1
5x2 , andv5 iC6(12C2)1/2, for the out of phase dampe
modes. Consequently arbitrary initial conditions lead to
phase oscillations, while the out of phase componen
damped out. ForN oscillators

ẋi5yi1CS D(
kÞ i

xk2xi D ,

~4!
ẏi52xi ,

with D a constant to be determined. One can use again
mal mode analysis, but it is useful to introduce two differe
methods. In the first we consider the velocity difference v
tor field (ẋi2 ẋ j ,ẏi2 ẏ j ) in the plane of position difference
(xi2xj ,yi2yj ). Calculate now the divergence of this vect
field

d~ ẋi2 ẋ j !/d~xi2xj !1d~ ẏi2 ẏ j !/d~yi2yj !52C~11D !.
~5!
2767 © 1999 The American Physical Society
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Since this quantity is negative, and the velocity differen
vector field is zero forxi5xj , yi5yj , the velocity differ-
ence contracts to the point where all oscillators move
gether. This, however, does not necessarily lead to sync
nized oscillations. When allxi ’s are identical, the coupling
term becomes@D(N21)21#xi . Consequently whenD
,(N21)21 the entire set of oscillators damps out while f
D.(N21)21, the oscillations amplitudes grow expone
tially with time. So for synchronous oscillations of consta
amplitudeDc5(N21)21 should be chosen.

This great sensitivity to the coupling constant is char
teristic of time-independent Hamiltonian systems. ForD
,Dc energy is dissipated from the systems, while ifD
.Dc energy is added. For driven Hamiltonian systems,
more general nonlinear oscillators this restriction does
apply as will be demonstrated in several examples.

An alternative method involves coupled Hamiltonian sy
tems, with the equations of motion

ẋi5]Hi /]yi1c f i~xi ,xk!,
~6!

ẏi52]Hi /]xi ,

whereHi is the Hamiltonian of thei th oscillator. Define

F5(
i

Hi ~7!

and calculate the time derivative

Ḟ5(
i

~]Hi /]xi• ẋi1]Hi /]yi• ẏi !

5(
i

~]Hi /]xi•]Hi /]yi1c]Hi /]xi f i

2]Hi /]yi•]Hi /]xi !

5c(
i

]Hi /]xi• f i . ~8!

For coupled harmonic oscillators withf i5(kÞ ixk /(N21)
2xi , and]Hi /]xi5xi , one gets

Ḟ5c(
i

xi S (
kÞ i

xk /~N21!2xi D
52c(

i
Fxi

22~N21!21(
kÞ i

xixkG
52c/2~N21!(

i ,k
~xi2xk!

2. ~9!

Therefore,F keeps decreasing untilxi5xk for all i and k,
leading to synchronization.

Consider now oscillators governed by the Hamiltoni
H5y2/21V(x), with the potential energyV having one or
several minimal~such asV5cosx!, about which there is
oscillatory motion. The equations of motion are

ẋi5yi1CF(
kÞ i

xk~N21!212xi G ,
~10!

ẏi52]V/]xi .
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Calculating now the divergence of the velocity difference~or
relative velocity! field the result is again the one found in E
~5! for the harmonic oscillator. ForD5(N21)21 synchro-
nization with constant amplitude oscillations is approache

It should be noted that only the velocities (ẋi ,ẏi) con-
verge not the positions. For a periodic potential, such as cx
different oscillators may be trapped in separate poten
wells, while the velocities synchronize. In this case the c
pling term in Eq.~10! approaches a nonzero constant asym
totically.

At this point it is useful to define what we mean by di
sipative coupling. It is the kind of coupling where relativ
velocity between oscillators leads to phase space contrac
where the left hand side of Eq.~5! as applied to the coupling
term is negative. All examples treated fall into this catego
Just as in the previous examples linear coupling will be us

SYNCHRONIZATION OF MORE GENERAL
OSCILLATORS

Since many biological systems~e.g., fireflies! resemble
self-synchronized pulsed systems, it is useful to consider
Volterra equations

ẋ5Ax~12y!,
~11!

ẏ52By~12x!,

which generate pulsed oscillations. Figure 1~a! shows com-
puted solutions of these equations withA52, B51 and two
initial conditionsx15x251 andy150.2, y250.1.

Now one adds dissipative coupling to these equations
the form

FIG. 1. Two Volterra oscillatorsA52, B51, with initial condi-
tions x15x251 andy150.2, y250.1. ~a! The oscillators are un-
coupled.~b! Coupled withC50.06. The separate sets of points a
F1 andF2 at different times.
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ẋi5Axi~12yi !1C(
kÞ i

xk ,

~12!
ẏi52Byi~12xi !.

With the substitutionx5ez, y5eh, Eq. ~11! can be derived
from the Hamiltonian

H5A@exp~h!2h#1B@exp~z!2z#, ~13!

whereh is the coordinate andz the momentum. It is useful to
rewrite Eq.~12! in the new coordinates

ż i5A@12exp~h i !#1C exp~2z i !(
kÞ i

exp~zk!,

~14!
ḣ i52B@12exp~z i !#.

For two coupled systems thez component of the relative
velocity is

ż12 ż25w~h1 ,h2!1C@exp~z22z1!2exp~z12z2!#
~15!

and the divergence is,

]~ ż12 ż2!/]~z12z2!52C@exp~z22z1!1exp~z12z2!#,
~16!

a negative quantity. Since the relative velocity vanish
whenz15z2 , h15h2 the system converges to the synchr
nous state. Figure 1~b! shows this convergence, compute
with the coupling constantC50.06.

For many coupled systems a modified version of Eq.~7!
can be used

F5(
i

@Hi2C~N21!h i # ~17!

with the time derivative

Ḟ5C(
i

]H/]z iFexp~2z i !(
kÞ i

exp~zk!2~N21!G
5BC(

i
@exp~z i !21#F(

kÞ i
exp~zk2z i !2~N21!G

522BC(
i ,k

sinh2@~z i2zk!/2#. ~18!

This is clearly a negative quantity, converging to zero wh
z i5zk for all i andk. The two sets of converging points i
Fig. 1~b! areF1 andF2 at different times.

It should be noted that the coupling used in Eq.~12! has a
different form from those used in earlier examples. Wh
convergence has been proven, there is still the questio
the asymptotic behavior of the system. ReplacingSxk in Eq.
~12! by (N21)xi , it is easy to see that neitherx5y50 nor
x→`, y→` is a solution. In fact this leads to a minor mod
fication of the Volterra equations, where in the first of E
~11!, 1 is replaced by 11C(N21)/A.
s
-

n

of
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Another example for synchronization by dissipative co
pling is that of Van der Pol oscillators of the form@10#

ẋi5yi1C(
kÞ i

xk ,

~19!
ẏi5A~12xi

2!yi2xi .

Individual Van der Pol oscillators (C50), are harmonic os-
cillators with nonlinear damping, producing growing wav
for uxu,1, and damped waves foruxu.1, so the wave settles
for arbitrary initial conditions into self sustained oscillation
The damping coefficientA.0, and small (A!1). For small
A the wave form is nearly sinusoidal. In the followingC
!1 will also be assumed.

For nearly sinusoidal waves one substitutes

xi5Ri~ t !sin~ t1c i !, ~20!

whereRi andc i are slow variables. With this approximatio
~19! becomes

2Ṙi cos~ t1c i !22Ri ċ i sin~ t1c i !

2A@12Ri
2 sin2~ t1c i !#Ri cos~ t1c i !

2C(
kÞ i

Rk cos~ t1ck!50. ~21!

After multiplying by sin(t1ci) and averaging over a perio
one gets

2Ri ċ i1C(
k

Rk sin~c i2ck!50. ~22!

For two coupled oscillations withc12c25Dc.

FIG. 2. Time development of two coupled driven systemsx1(t)
andx2(t). Equation~25!, with A55, C150.05,C250.2, and initial
conditionsy150.1, y250.2, andx15x250. ~a! 0,t,60, ~b! 50
,t,60.
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Dċ52~C/2!~R1 /R21R2 /R1!sin~Dc!. ~23!

For C.0, Dc→0 the oscillations have become synchr
nized, while forC,0, Dc→p. For N oscillators forC,0,
splay states are approached withDc→2p/N. Multiplying
Eq. ~21! with cos(t1ci) and averaging gives for two couple
oscillators

2DṘ5@A2C cosDc2~A/4!~R1
21R1R21R2

2!#DR.
~24!

In the absence of couplingR15R252, so the right side is
negative andDR→0.

Numerical computation shows that synchronization
curs even when the fundamental frequencies of the in
vidual oscillators are slightly different.@In the second part o
Eq. ~19!, xi is replaced with (11« i)xi .#

Finally, dissipatively coupled time dependent Ham
tonian systems are studied. Take, e.g., the equations

ẋi5A sin~2pyi !sin~2pt !1C1(
kÞ i

xk2C2xi

~25!
ẏi5xi ,

where theC1 term provides coupling andC2.0 damping.
The undamped uncoupled systemC15C250 can exhibit
D

-
i-

regular or chaotic behavior, depending on initial conditio
Figure 2 shows the time development of two coupled s
tems described by Eq.~25! with A55, C150.05 andC2
50.2. The initial conditions are chosen such that in the
sence of damping and coupling the trajectories are chao
In Fig. 2 due to damping (C2) the trajectories become regu
lar ~dissipation forces the trajectories to spiral into isla
chains! while C1 produces synchronization.

It is easier to study two coupled standard maps with d
sipation

Pi85Pi1~K/2p!sin~2p•Xi !1C1Pk2C2Pi ,
~26!

Xi85Xi1Pi8 ,

where fori 51, k52 andi 52, k51. The Jacobian determi
nant of the four by four matrixD5(12C2)22C1

2, is less
than one ifC2,2 and phase space contracts. One finds co
putationally a behavior quite similar to the one for Eq.~25!,
trapping in island chains forC2.0 and synchronization~the
two systems end up on the same island chain! whenC1 ex-
ceeds some critical value which depends on the initial c
ditions as well as the parametersK andC2 .

To summarize, a variety of different oscillator system
with dissipative coupling have been investigated. In each
ample the systems tended to synchronization.
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