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General form of coupling leading to synchronization of oscillating dynamical systems
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There are numerous examples in nature where oscillating or pulsing physical and biological systems auto-
matically synchronize. Here we pose the question: Is there a general type of coupling that leads to such
synchronization? It is demonstrated on numerous examples that dissipative coupling results in synchronization
for a variety of systemg.51063-651%99)13308-7

PACS numbd(s): 05.45.Xt

INTRODUCTION What should be the form of coupling added to these equa-
tions that leads to synchronization? It will be shown that a

ha;—?éac%lgtlprcr)gcl:zriceog fgggcvfg'sgte'g% dﬂgf%ﬁ:egig;cglast?rssimple type of dissipative coupling leads to synchronization
y Py y in a variety of systems.

tems such as Huygens pendulum clocks, hanging side b'y

side self-synchronize, and so do a variety of biological sys-
tems, such as thousands of fireflies flashing in synchrony COUPLING OF SIMPLE HAMILTONIAN OSCILLATORS

pac_;emaker cells of the hgart, etc. More recgntly synchroni- The simplest case to consider is the one with two har-
zation of Josephson junction arrays has received much attef;onic oscillators withf=y;, g=—x;. Introduce dissipa-
1 [

tion [6-9]. ive coupling to get
Much recent work has been carried out by Strogatz ané Pingto g
co-workerq 2—4], who study a system of coupled limit cycle X1=Y1+ C(Xo—Xy),
oscillators described by
Y1=—Xq,
. _ K )
ZJ':ZJ'(].—|Z]-|2+I(,0)+ NZ (Zi_zj)! )-(2:y2+C(X1_X2),
Yo=—Xz,

wherez; is the position of thgth oscillator in the complex
plane, it is clear that the uncoupled oscillatoks={0) are  whereC is the coupling constant, or in a different form
attracted to the unit circle limit cycle and the motion of the
individual oscillators on the unit circle is described by X1+ C(X;—X,) +X,=0,
. o ()
. K X+ C(Xo—Xq) +X,=0.
0j=w+ NE Sln(ﬁ,—ﬂj)

: Normal mode analysis leads to the frequenaies*1,
corresponding to undamped in phase oscillators with
Depending on the coupling constagand the distribution of =X,, andw=iC=(1—C?)"? for the out of phase damped
oscillators in the frequency domain synchronization can ocimodes. Consequently arbitrary initial conditions lead to in
cur. phase oscillations, while the out of phase component is

Here we are looking at a different aspect of synchronizadamped out. FoN oscillators
tion. Since there are many different types of systems in na-

ture that exhibit self-synchronization, it is reasonable to as- -

: L . ; =Y+ =X
sume that there exists a general kind of coupling producing X=yi+C Dk; "k X')’
synchronization in a large variety of different systems. Typi- (4)
cally one expects by increasing the number of dimensions of Vi=—Xi,

phase space, as one gets by coupling individual systems, to
lead to more chaotic behavior. In these systems the oppositgith D a constant to be determined. One can use again nor-

effect, synchronization leading to order is apparent. mal mode analysis, but it is useful to introduce two different
Consider N identical oscillators, characterized by the methods. In the first we consider the velocity difference vec-
equations tor field (X;—X;,y;—V;) in the plane of position differences
(Xi—X;,Yi—Y;). Calculate now the divergence of this vector
xi=f(xyi), field

| @ i —x)/d(x;— ;) + d(§— ¥ /d(yi—y;) = — C(1+ D).
Yi=0(Xi,Yi). (5)
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Since this quantity is negative, and the velocity difference 6.0

vector field is zero fox;=x;, y;=y;, the velocity differ-

ence contracts to the point where all oscillators move to-
gether. This, however, does not necessarily lead to synchro-

nized oscillations. When akt;’s are identical, the coupling
term becomes|[D(N—1)—1]x;. Consequently wherD

<(N—1)"1 the entire set of oscillators damps out while for
D>(N—1)"%, the oscillations amplitudes grow exponen-
tially with time. So for synchronous oscillations of constant

amplitudeD .= (N—1)"! should be chosen.

This great sensitivity to the coupling constant is charac-

teristic of time-independent Hamiltonian systems. Hdr
<D, energy is dissipated from the systems, whileDif

>D, energy is added. For driven Hamiltonian systems, or *0)
more general nonlinear oscillators this restriction does not

apply as will be demonstrated in several examples.

An alternative method involves coupled Hamiltonian sys-

tems, with the equations of motion

Xi=0H; /ay;+cfi(x; Xy,

. 6
yi=—(9Hi/r9Xi, ()

whereH; is the Hamiltonian of theth oscillator. Define
F:Z H; (7)

and calculate the time derivative

FZE ((9H|/(9X|X|+(7H|/(9y|y|)
I

:2 (ﬁHi/(?Xi'(?Hi/ayi+C(9Hi/(7Xifi
I
—(9Hi/(9yi~(9Hi/é’Xi)
:CE ﬁHi/‘;Xi'fi- (8)
I

For coupled harmonic oscillators with=2>_.;x,/(N—1)
—X;, anddH; /dx;=x;, one gets

'F:CZ X‘(.;i Xk/(N—l)_Xi)
:_Czi

x2—(N— 1)712, XXy
k#i

=—c/2(N—1)% (X — Xp)2. (9)

Therefore,F keeps decreasing untd,=x, for all i andk,
leading to synchronization.

Consider now oscillators governed by the Hamiltonian

H=y?/2+V(x), with the potential energy/ having one or
several minimal(such asV=cosx), about which there is
oscillatory motion. The equations of motion are

k#i

. 10
yi:—&V/é)Xi. ( )

X=y;+C| X Xk(N—l)_l—Xi}'

X1,%y l

@ o

6.0

xy(f)

Fi
Fy2)

U; |

by o

FIG. 1. Two Volterra oscillatoré\=2, B=1, with initial condi-
tions x;=x,=1 andy;=0.2,y,=0.1. (8) The oscillators are un-
coupled.(b) Coupled withC=0.06. The separate sets of points are
F, andF, at different times.

Calculating now the divergence of the velocity differerfoe
relative velocity field the result is again the one found in Eq.
(5) for the harmonic oscillator. Fab=(N—1)"* synchro-
nization with constant amplitude oscillations is approached.

It should be noted that only the velocitieg; (y;) con-
verge not the positions. For a periodic potential, such ax cos
different oscillators may be trapped in separate potential
wells, while the velocities synchronize. In this case the cou-
pling term in Eq.(10) approaches a nonzero constant asymp-
totically.

At this point it is useful to define what we mean by dis-
sipative coupling. It is the kind of coupling where relative
velocity between oscillators leads to phase space contraction,
where the left hand side of E() as applied to the coupling
term is negative. All examples treated fall into this category.
Just as in the previous examples linear coupling will be used.

SYNCHRONIZATION OF MORE GENERAL
OSCILLATORS

Since many biological systeme.g., fireflies resemble
self-synchronized pulsed systems, it is useful to consider the
Volterra equations

X=Ax(1-y),
(11)

y=—-By(1-x),

which generate pulsed oscillations. Figur@)l1shows com-
puted solutions of these equations witk-2, B=1 and two
initial conditionsx;=x,=1 andy;=0.2,y,=0.1.

Now one adds dissipative coupling to these equations in
the form
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Another example for synchronization by dissipative cou-

5<i=AXi(1—Yi)+Ck§i Xk s pling is that of Van der Pol oscillators of the forffO]
. (12 .
yi=—Byi(1-X). XiZYi+C|§i Xk s
With the substitutionx=e¢, y=e7, Eq.(11) can be derived , ) (19
from the Hamiltonian Yi=A(l=X)Yi—X;.
H=A[exp 7)— 7]+ B[exp({)—{], (13)  Individual Van der Pol oscillatorsG=0), are harmonic os-

cillators with nonlinear damping, producing growing waves
wherep is the coordinate angithe momentum. It is usefulto for x| <1, and damped waves f{x|>1, so the wave settles
rewrite Eg.(12) in the new coordinates for arbitrary initial conditions into self sustained oscillations.
The damping coefficienA>0, and small A<1). For small
A the wave form is nearly sinusoidal. In the followir@
<1 will also be assumed.
(14) For nearly sinusoidal waves one substitutes

zi=A[1—eX|o<ni>]+cexn—mgi exp(dy),

m=—B[1—exp{)].

For two coupled systems thé component of the relative
velocity is

X =Ri(t)sin(t+ ), (20)

whereR; and; are slow variables. With this approximation
(19) becomes

{1= L= (71,72) + Clexp({— 51)—exp(§1—§2)](15) 2R cogt+ i) — 2R i sin(t+ i)

_ _R2 qj ' . '
and the divergence is, A[1-R? sir(t+ ;) IR cogt+ )

N 1= L)Ly~ L) = — Clexp(Lo—{1) +exp({y— §2>(]1,6) ~C2, Ry cogt+yy)=0. (21)

a negative quantity. Since the relative velocity vamshesﬁ‘:srgg]tiltlplymg by sint+ys) and averaging over a period

when{,=¢{,, 7,= m, the system converges to the synchro-

nous state. Figure(tt) shows this convergence, computed .

with the coupling constan€=0.06. 2R i +C> Ry sin(y;— ) =0. (22)
For many coupled systems a modified version of &q. k

can be used For two coupled oscillations witl; — ¢, = A .

F=> [H—C(N-1)7] (17) 25

with the time derivative

A

. t 60
F:c:Zi IH19¢; exp(—gi)gi exp(gk)—(N—l)}

=BC2 [exrxzo—l][k; exqgk—m—(N—l)} 2

= ~2BC3, sinff((5 - 4o/2) (18 o

'AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
This is clearly a negative quantity, converging to zero when

{i={¢ for all i andk. The two sets of converging points in 50 , o0
Fig. 1(b) areF; andF, at different times.

It should be noted that the coupling used in Et) has a
different form from those used in earlier examples. While
convergence has been proven, there is still the question of ‘éf’
the asymptotic behavior of the system. Replacing in Eq. (b)
(12) by (N—1)x;, it is easy to see that neither=y=0 nor FIG. 2. Time development of two coupled driven systeqis)
X—00, y—oo is a solution. In fact this leads to a minor modi- andx,(t). Equation(25), with A=5, C;=0.05,C,=0.2, and initial
fication of the Volterra equations, where in the first of Eg.conditionsy;=0.1, y,=0.2, andx;=x,=0. (a) 0<t<860, (b) 50
(11), 1 is replaced by + C(N—1)/A. <t<60.
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A= —(CI2)(Ry/Ry+ Ry /Ry)SINA ). (23  regular or chaotic behavior, depending on initial conditions.
Figure 2 shows the time development of two coupled sys-
For C>0, Ay—0 the oscillations have become synchro-tems described by Eq25 with A=5, C;=0.05 andC,
nized, while forC<0, A¢g—m. For N oscillators forC<0, =0.2. The initial conditions are chosen such that in the ab-
splay states are approached withy—27/N. Multiplying ~ sence of damping and coupling the trajectories are chaotic.
Eq. (21) with cost+ ) and averaging gives for two coupled In Fig. 2 due to damping(,) the trajectories become regu-

oscillators lar (dissipation forces the trajectories to spiral into island
. chaing while C,; produces synchronization.
2AR=[A—CcosA w—(A/4)(R§+ R;R,+ R%)]AR. It is easier to study two coupled standard maps with dis-
(24)  sipation

In the absence of coupling, =R,=2, so the right side is P/ =P, + (K/2m)sin(27- X;) + C,Py—C,P; ,

negative andA\R— 0. 26)
Numerical computation shows that synchronization oc- N

curs even when the fundamental frequencies of the indi- AU

vidual oscillators are slightly differenftln the second part of

Eq. (19), ; is replaced \?Vithy(]:Ls-)X- E] P where fori=1, k=2 andi=2, k=1. The Jacobian determi-
: » A i/ 70 - SN 2-~2 -
Finally, dissipatively coupled time dependent Hamil- Nant of the four by four matrbdD=(1—C;)* Cy, is less

tonian systems are studied. Take, e.g., the equations than one ifC,<2 and phase space contracts. One finds com-

putationally a behavior quite similar to the one for E25),

trapping in island chains fd€,>0 and synchronizatiofthe

two systems end up on the same island chaihenC; ex-
(25) c_e_eds some critical value which depends on the initial con-
Vi=Xi, ditions as well as the parametdfsandC,.

To summarize, a variety of different oscillator systems

where theC; term provides coupling an€,>0 damping. with dissipative coupling have been investigated. In each ex-
The undamped uncoupled systeih=C,=0 can exhibit ample the systems tended to synchronization.

Xi=Asin(2my;)sin(2mt) + C1 >, x— CoX;
k#i
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